

Caringbah High School

Year 12 2017 Mathematics HSC Course Assessment Task 4 (Trial HSC)

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A reference sheet is provided with this paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations
- Marks may not be awarded for partial or incomplete answers

Total marks – 100

Section I	10 marks

Attempt Questions 1-10 Mark your answers on the answer sheet provided. You may detach the sheet and write your name on it.

Section II	90 marks
------------	----------

Attempt Questions 11-16 Write your answers in the answer booklets provided. Ensure your name or student number is clearly visible.

Name:	Class:	

		Marker's Use Only						
Section I	Section I Section II Total							tal
Q 1-10	Q11	Q12	Q13	Q14	Q15	Q16		
								%
/10	/15	/15	/15	/15	/15	/15	/100	

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–5

- 1. Factorise $8x^6 27$
 - (A) $(2x^2-3)(4x^4-6x^2+9)$
 - (B) $(2x^2+3)(4x^4-6x^2+9)$
 - (C) $(2x^2-3)(4x^4+6x^2+9)$
 - (D) $(2x^2+3)(4x^4+6x^2+9)$
- 2. The quadratic equation $3x^2 + 5x 2 = 0$ has roots α and β . What is the value of $\alpha^2 \beta + \alpha \beta^2$?
 - (A) $-\frac{10}{9}$
 - (B) $-\frac{9}{10}$
 - (C) $\frac{9}{10}$
 - (D) $\frac{10}{9}$
- 3. Which of the following is true about $y = 4\sin\frac{x}{2}$?
 - (A) Amplitude = 4 and period = $\frac{1}{2}$
 - (B) Amplitude = 4 and period = 2π
 - (C) Amplitude = $\frac{1}{2}$ and period = 4
 - (D) Amplitude = 4 and period = 4π

4. The equation $x^2 + y^2 + 6y = 7$ describes a circle with:

- (A) Centre (0,3) and radius 4 units
- (B) Centre (0, -9) and radius 6 units
- (C) Centre (0, -3) and radius 4 units
- (D) Centre (0,3) and radius 6 units

5. The terms x, 1-x, x^2-2 form an arithmetic series.

Which of the following are possible values for the common difference?

- (A) 1 and 9
- (B) -1 and 9
- (C) 1 and -9
- (D) -1 and -9

6. What is the derivative of $\frac{e^{-x}}{x}$?

- (A) $\frac{-xe^{-x}-e^{-x}}{x^2}$
- (B) $\frac{-xe^{-x}+e^{-x}}{x^2}$
- $(C) \quad \frac{e^{-x} + xe^{-x}}{x^2}$
- (D) $\frac{e^{-x} xe^{-x}}{x^2}$

7. What is the value of $\int_{-3}^{2} |x+1| dx$?

- $(A) \quad \frac{5}{2}$
- (B) $\frac{11}{2}$
- (C) $\frac{13}{2}$
- (D) $\frac{17}{2}$

- 8. What is the value of $\lim_{x\to 10} \frac{x^2-100}{x-10}$?
 - (A) Undefined
 - (B) 0
 - (C) 8
 - (D) 20
- **9.** Which of the following graphs represents the parabola $y^2 = -4x + 16$?

(A)

(B)

(C)

(D)

- 10. If $y=10^x$, which of the following is true?
 - $(A) \quad x = \sqrt[10]{y}$
 - (B) $x = \log_e y$
 - (C) $\frac{dy}{dx} = 10^x$
 - (D) $\frac{dy}{dx} = (\log_e 10) \times 10^x$

Section II

90 marks

Attempt Questions 11–16

Allow about 2 hours 45 minutes for this section

Answer each question in a SEPARATE writing booklet.

Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Express
$$\frac{1}{\sqrt{5}+2}$$
 in the form $a+b\sqrt{5}$ where a and b are integers.

(b) Consider the table of values for f(x) below.

 x
 3
 3.25
 3.5
 3.75
 4

 f(x)
 1.0
 0.8
 0.65
 0.55
 0.5

2

Find an approximation for the definite integral $\int_3^4 f(x) dx$ using Simpson's Rule and the above table. Give your answer correct to 3 significant figures.

(c) Find
$$\int_{\frac{\pi}{2}}^{\pi} \sec^2 \frac{x}{3} dx$$
, leaving your answer in exact form.

(d) Differentiate
$$\frac{\sin x}{e^x}$$
 with respect to x, leaving your answer in simplified form. 2

(e) Find the area bounded by the curve
$$y = x^3 - 4x$$
 and the x-axis.

(f) Solve
$$\log_2 x + \log_2(x+7) = 3$$
 for $x > 0$.

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) Solve
$$|2x-5|=3$$
.

(b) If
$$\tan \theta = \frac{7}{9}$$
 and $\cos \theta < 0$, find the exact value of $\sin \theta$.

- (c) For what values of x is the function $f(x) = -x^2(x+3)$ decreasing?
- (d) ABCD is a rhombus. CB is produced to E such that CB = BE.

Copy the diagram into your answer booklet.

- (i) Prove that $\triangle ABE \equiv \triangle DCB$.
- (ii) Hence explain why AE//DB.
- (iii) What type of quadrilateral is *AEBD*? Justify your answer.
- (e) Given that $\log_a m = 1.75$ and $\log_a n = 2.25$, find the value of:
 - (i) $\log_a mn$
 - (ii) $\log_a \frac{n}{m}$
 - (iii) $\sqrt[5]{mn^2}$ in terms of a

Question 13 (15 marks) Use a SEPARATE writing booklet.

- (a) The tangents of the parabola $y = x^2 + ax 3$ at x = 0 and x = 1 are known to be perpendicular. Find the value of a.
- **(b)** Given that $\tan \theta = \frac{\sin \theta}{\cos \theta}$, find $\int \tan(2x) dx$.
- (c) Consider the graph of $y = x^3 + 3x^2 9x$.
 - (i) Find expressions for $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.
 - (ii) Find the coordinates of any stationary points and determine their nature. 3
 - (iii) Show that there is a point of inflexion at (-1,11).
 - (iv) Sketch the graph of $y = x^3 + 3x^2 9x$, labelling the above features and the *y*-intercept.
- (d) Given that $\frac{d^2y}{dx^2} = \frac{2}{x^2} + 2e^{2x}$ and that $\frac{dy}{dx} = e^2$ at $\left(1, \frac{e^2}{2}\right)$, find the expression for y in terms of x.

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) A(1,-1), B(-3,1), C(-3,4) and D(3,1) are points on the Cartesian plane with AB||CD.

(i) Find the distances BA and CD.

2

(ii) Show that the equation of CD is x + 2y - 5 = 0.

2

(iii) Find the perpendicular distance of A to CD.

- 2
- (iv) Hence, or otherwise, find the area of the quadrilateral *ABCD*.
- 1

3

- (b) A and B are points on a circle with centre O. The area of the sector AOB is 3π cm² while the length of arc AB is $\frac{3\pi}{2}$ cm. Find the value of θ and r.
- (c) (i) Sketch the curve $y = \log_e x$ and shade the region bounded by the curve, the y-axis, y = 1 and y = 2.
 - (ii) Find, in exact form, the volume of the solid of revolution formed when the above region is rotated about the *y*-axis.

Question 15 (15 marks) Use a SEPARATE writing booklet.

(a) Consider the curves $y = e^x$ and $y = e^{1-x}$ below.

(i) Find the x-coordinate of point of intersection between the two curves.

1

- (ii) Find the exact value of the shaded area bounded by the two curves, the coordinate axes and x = 1.
- (b) The acceleration of a particle travelling in a straight line is given by $\frac{d^2x}{dt^2} = 8 6t$. The particle is initially at the origin and travelling at 5 m/s to the right.
 - (i) Find the equations for the velocity and displacement of the particle at any time t seconds.
 - (ii) At what time does the particle return to the origin? Find the velocity of the particle at that time.

Question 15 continues on page 10

Question 15 (continued)

(c) A car company offers a loan of \$20 000 to purchase a new car for which it charges interest at 1% per month. As a special deal, the company does not charge interest for the first 6 months; however, the monthly repayments start at the end of the first month. Wayne takes out a loan and agrees to repay the loan over 5 years by making 60 equal monthly repayments of \$M.

Let A_n be the amount owing at the end of the nth month.

- (i) Find an expression for A_4 .
- (ii) Show that $A_8 = (20000 6M)(1.01)^2 M(1+1.01)$
- (iii) Find an expression for A_{60} .
- (iv) Find the value of M.

Question 16 (15 marks) Use a SEPARATE writing booklet.

- (a) (i) Differentiate $x^2 \log_e x$
 - (ii) Hence, or otherwise, find $\int x \log_e x \ dx$
- **(b)** A bacteria culture of *N* bacteria is increasing exponentially so that $\frac{dN}{dt} = kN$ where *t* is time in minutes and *k* is a constant.

The number of bacteria increases from 100 to 400 in 2 minutes.

- (i) Show that $N = Ae^{kt}$ is a solution to the above differential equation, where A is a constant.
- (ii) Find the exact value of the constant k in simplest form.
- (iii) Find the number of bacteria present after 10 minutes.
- (iv) After how many minutes and seconds will there be 1000 bacteria? 2
- (c) A cylinder of radius r cm and height h cm is inscribed in a cone with base radius 6 cm and height 20 cm, as shown in the diagram below.

- (i) Show that the volume V of the cylinder is given by $V = \frac{10\pi r^2(6-r)}{3}$.
- (ii) Hence, find the values of r and h such that the cylinder has a maximum volume. 3

End of Paper

MATHEMATICS (2W) TRIAL 2017

1.
$$8x^6 - 27 = (2x^2)^3 - 3^3$$

= $(2x^2 - 3)(4x^4 + 6x^2 + 9)$

2.
$$3n^2 + 5n - 2 = 0$$
.
 $[x+\beta = -5/3]$
 $(x\beta = -2/3)$
 $d^2\beta + d\beta^2 = d\beta(x+\beta)$
 $= -5 \times -2 \times 3$

3.
$$y = 4 \sin(\frac{1}{2})$$

 $A = 4$
 $T = \frac{2\pi}{V_2} = 4\pi$

4.
$$\chi^2 + y^2 + by = 7$$

 $\chi^2 + (y+3)^2 = 16$
 $C(0,-3)$
 $y = 4$

5.
$$AP: d=T_2-T, =T_3-T_2$$
 $1-x-x=x^2-2-(1-x)$
 $1-2x=x^2-2-1+x$
 $0=x^2+3x-4$
 $(x+4)(x-1)=0$
 $x=-4,1$
 $i.e. \begin{cases} -4,5,13 & or \\ 1,0,-1 \end{cases}$
 $i.e. q=q,-1$

6.
$$\frac{d}{dx} \left(\frac{e^{-x}}{x} \right) = \frac{(e^{-x})' \cdot x - e^{-x}(x)'}{x^2}$$

$$= \frac{-e^{-x} \cdot x - e^{-x} \cdot 1}{x^2}$$

$$= \frac{-xe^{-x} - e^{-x}}{x^2}$$

7.
$$\int_{-3}^{2} |n+1| dn$$

$$= \frac{1}{2}(2)(2) + \frac{1}{2}(3)(3)$$

$$= \frac{13}{2}$$

8.
$$\lim_{x\to 10} \frac{x^2-100}{x-10} = \lim_{x\to 10} \frac{(x-10)(x+10)}{x-10}$$

$$= \lim_{x\to 10} x+10$$

$$= 10+10$$

1	2	3	4	2	6	7	8	9	10
C	a	Ø	C	B	A	C	D	A	D

(a)
$$\frac{1}{\sqrt{5}+2} \times \frac{\sqrt{5}-2}{\sqrt{5}-2} = \frac{(5-2)}{(6)^2-2^2}$$

= $\frac{\sqrt{5}-2}{5-4}$
= $\frac{\sqrt{5}-2}{1}$
= $\frac{1}{\sqrt{5}-2}$

(b)
$$\int_{3}^{4} f(x) dx \approx \frac{0.25}{3} \left[1.0 + 4(0.8 + 0.55) + 2(0.65) + 0.5 \right]$$

= 0.6833...

(c)
$$\int_{3}^{T} \sec^{2}\left(\frac{x_{1}}{3}\right) dx = \frac{1}{V_{3}} \left[\tan \frac{x_{1}}{3} \right]_{\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$= 3 \left[\tan \frac{\pi}{3} - \tan \frac{\pi}{6} \right]$$

$$= 3 \left(\sqrt{3} - \sqrt{\sqrt{3}} \right)$$

$$= \frac{3}{\sqrt{3}}$$

$$= \frac{6}{\sqrt{3}}$$

(d)
$$\frac{d}{dn} \left(\frac{s_{inn}}{e^{n}} \right) = \frac{\cos x \cdot e^{n} - \sin x \cdot e^{n}}{(e^{n})^{2}}$$

$$= \frac{e^{n} \left(\cos x - s_{inn} \right)}{(e^{n})^{2}}$$

$$= \frac{\cos x - s_{inn}}{e^{n}}$$

(e)
$$y = x^3 - 4x$$
.
= $x(x^2 - 4)$
= $x(x+2)(x-2)$

(f)
$$\log_2 x + \log_2 (x+7) = 3$$

 $\log_2 (x(x+7)) = 3$
 $x(x+7) = 2^3$
 $x^2 + 7x - 8 = 0$
 $(x-1)(x+8) = 0$
 $x = 1,-8$
But $x > 0$, $x = 1$ only

(a)
$$|2x-5|=3$$

 $2x-5=3$ $2x-5=-3$
 $2x=8$ $2x=2$
 $x=4$ $x=1$
 $2x=1, 4$

(b)
$$\tan \theta = \frac{7}{9}70$$
, $\cos \theta < 0$. $\sqrt{130}$
 $\sin \theta = -\frac{7}{\sqrt{130}}$

(c)
$$f(x) = -\chi^2(x+3)$$

 $= -\chi^3 - 3\chi^2$
 $f'(x) = -3\chi^2 - 6\chi$
 $= -3\chi(x+2) < 0$ for decreasing.
 $||||-2 \circ |||||$
 $||-2 \circ ||||$
 $|-1 \times |-2 \rangle$, $||-1 \times |-2 \rangle$.

(1) In DABE & DDCB,

AB = DC (opp. sides of rhombus are equal)

AB | DC (opp. sides of rhombus are parallel)

LABE = LDCB (corres. Ls equal, AB | DC)

CB = BE (given)

LABE = DCB (SAS)

(ii) LAEB = LDBC (corres. Ls'in cong. As are equal)

.'. AE | DB (corres. Ls equal on parallel lines)

(iii) AE = DC (corres. sides in conf. is are equal).

... AEBD is a parallelogram (opp. nodes are equal 2 parallel.

(e) $log_a m = 1-75$, $log_a n = 2.25$. (i) $log_a (mn) = log_a m + log_a n$ = 1-75 + 2-25 = 4

(ii) loga (n) = logan - logam

= 2-25 - 1-75

= 0.5 $= \left[a^{1-75} \times (a^{2-25})^{2} \right]^{\frac{1}{5}}$ $= \left[a^{1-75} \times a^{4-5} \right]^{\frac{1}{5}}$ $= \left[a^{6-25} \right]^{\frac{1}{5}}$ $= a^{1-25}$ $= a^{5/4}$

 $log_a m = 1.75$ $m = a^{1.75}$ $log_a n = 2.25$ $n = a^{2.25}$

(a)
$$y = \chi^2 + a\chi - 3$$

 $y' = 2\chi + a$
At $\chi = 0$, $m_1 = 2(0) + a = a$
At $\chi = 1$, $m_2 = 2(1) + a = 2 + a$
 $m_1 \times m_2 = -1$
 $a \times (2 + a) = -1$
 $a^2 + 2a + 1 = 0$
 $(a+1)^2 = 0$
 $a = -1$

(b)
$$\int \tan(2\pi) dx = \int \frac{\sin 2\pi}{\cos 2\pi} d\pi$$

$$= -\frac{1}{2} \int \frac{-2\sin 2\pi}{\cos 2\pi} d\pi$$

$$= -\frac{1}{2} \int \frac{\cos 2\pi}{\cos 2\pi} d\pi$$

$$= -\frac{1}{2} \ln|\cos 2\pi| + c.$$

(c)
$$y = x^3 + 3x^2 - 9x$$

(i) $\frac{dy}{dx} = 3x^2 + 6x - 9$
 $\frac{d^2y}{dx^2} = 6x + 6$.
(ii) SP when $\frac{dy}{dx} = 0$
 $\frac{3(x^2 + 2x - 3) = 0}{3(x - 1)(x + 3)} = 0$
 $\frac{3(x - 1)(x + 3)}{3(x - 1)(x - 3)} = 0$

At
$$x=1$$
, $y=1^3+3(1)^2-9(1)=-5$
 $\frac{d^2y}{dx^2}=6(1)+6=12>0$
.'. min SP at $(1,-5)$

At
$$x = -3$$
, $y = (-3)^3 - 3(-3)^2 - 9(-3) = 27$

$$\frac{d^2y}{dx^2} = 6(-3) + b = -12 < 0$$

$$\therefore \max SP \text{ at } (-3, 27).$$

(iii) IP when
$$\frac{d^2y}{dn^2} = 0$$

$$6x+6=0$$

$$6x=-6$$

$$x=-1$$

Check for concavity change $\frac{x}{d^2y} = \frac{-1 \cdot 1}{-0 \cdot 6} = \frac{-0.9}{0.6}$

At x=-1, $y=(-1)^3+3(-1)^2-9(-1)=11$ 1-10 at (-1,11).

(A)
$$\frac{d^2y}{dx^2} = \frac{2}{2x^2} + 2e^{2x}$$

$$= 2x^{-2} + 2e^{2x}$$

$$\frac{dy}{dx} = \int 2x^{-2} + 2e^{2x} dx$$

$$= \frac{2x^{-1} + 2e^{2x} + C_1}{2}$$

$$= -2x^{-1} + e^{2x} + C_1$$

$$= -2x^{-1} + e^{2x} + C_1$$

$$= -2 + e^{2} + C_1$$

$$C_1 = 2$$

$$\frac{dy}{dx} = -2x^{-1} + e^{2x} + 2$$

$$y = \int -2x^{-1} + e^{2x} + 2 dx$$

$$= -2\ln x + \frac{e^{2x}}{2} + 2x + C_2$$

$$Sub x = 1, y = \frac{e^2}{2}$$

$$\frac{e^2}{2} = -2\ln(1) + \frac{e^{2(1)}}{2} + 2(1) + C_2$$

$$0 = 0 + 2 + C_2$$

$$C_2 = -2$$

1. y = -2/nx+ ex + 2x-2.

Question 14.

(a) (i)
$$BA = \sqrt{(-3-1)^2 + (1--1)^2}$$

= $\sqrt{20}$
= $2\sqrt{5}$
 $CD = \sqrt{(3--3)^2 + (1-4)^2}$
= $\sqrt{45}$
= $3\sqrt{5}$

A(1,-1)

B (3,1)

C (-3,4)

D (3,1).

(ii)
$$m_{co} = \frac{1-4}{3-3} = \frac{-3}{6} = \frac{-1}{2}$$

 $y-y_1 = m(x-x_1)$
 $y-1 = \frac{1}{2}(x-3)$

$$2y-2 = -x+3$$

$$CD: x+2y-5=0.$$
(iii)
$$d_{\perp} = \frac{|ax_1+by_1+c|}{\sqrt{a^2+b^2}}$$

$$= \frac{|1(1)+2(-1)-5|}{\sqrt{1^2+2^2}}$$

$$= \frac{|-6|}{\sqrt{5}}$$

(iv) ABCD 73 a trapezium (AB/CD)

Area =
$$\frac{1}{2}$$
 h (a+b)

= $\frac{1}{2}$ x $\frac{6}{5}$ x (2 $\sqrt{5}$ + 3 $\sqrt{5}$)

= $\frac{3}{\sqrt{5}}$ x 5 $\sqrt{5}$

= $|5|$ with:

(b) Area =
$$\frac{1}{2}v^2\theta$$

$$3\pi = \frac{1}{2}v^2\theta$$

$$6\pi = v^2\theta - 0$$

$$1 = v\theta$$

$$\frac{3\pi}{2} = v\theta - 2$$

$$\frac{6\pi}{2} = \frac{v^2\theta}{v\theta}$$

$$\frac{3\pi}{2} = \frac{v^2\theta}{v\theta}$$

$$\frac{3\pi}{2} = \frac{v^2\theta}{v\theta}$$

$$\frac{3\pi}{2} = \frac{v^2\theta}{v\theta}$$

$$\frac{3\pi}{2} = \frac{v^2\theta}{v\theta}$$

Sub v = 4 in D $6\pi = 160$ $1 - 0 = 3\pi$

(ii)
$$V = \pi \int_{a}^{b} \chi^{2} dy$$

$$= \pi \int_{a}^{2} e^{2y} dy$$

$$= \pi \left[\frac{e^{2y}}{2}\right]_{1}^{2}$$

$$= \pi \left(\frac{e^{4}}{2} - \frac{e^{2}}{2}\right)$$

$$= \pi \left(\frac{e^{4} - e^{2}}{2}\right)$$

$$= \pi \left(\frac{e^{4} - e^{2}}{2}\right)$$

Question 15.

(a) (t)
$$y=e^{x}-D$$

 $y=e^{1-x}-2$
POI: Sub D in 2
 $e^{x}=e^{1-x}$
 $x=1-x$
 $2x=1$
 $x=\frac{1}{2}$

(ii) Area =
$$\int_{0}^{1/2} e^{x} dx + \int_{0}^{1} e^{1-x} dx$$

= $2 \int_{0}^{1/2} e^{x} dx$
= $2 \left[e^{x} \right]_{0}^{1/2}$
= $2 \left(e^{1/2} - e^{0} \right)$
= $2 \left(e^{1/2} - e^{0} \right)$

(b) (i)
$$\frac{d^2x}{dt^2} = 8-6t$$

 $\frac{dx}{dt} = \int 8-6t \, dt$
 $= 8t - \frac{6t^2}{2} + C$,
Sub $t=0$, $x=5$
 $5 = 8(0) - 3(0)^2 + C$,
 $C_1 = 5$

dx = 8+ -3+2 +5

$$x = \int 84 - 3t^{2} + 5 dt$$

$$= \frac{84^{2}}{2} - \frac{34^{3}}{3} + 5 d + 62$$

$$= \frac{84^{2}}{2} - \frac{34^{3}}{3} + 5 d + 62$$

Sub t=0, x=0.

$$0 = 4(0)^2 - 0^3 + 5(0) + C_2$$

 $C_1 = 0$

(ii)
$$X = 4t^2 - t^3 + 5t = 0$$

 $-1(t^2 - 4t - 5) = 0$
 $-1(t - 5)(t + 1) = 0$
 $t = 0, 5, -1$
 $t = 0, 5, -1$
 $t = 0, 5, -1$

 $\frac{dx}{dx} = 8(2) - 3(2)^2 + 2$

= -30 m/s.

(c) (i)
$$A_1 = 20000 - M$$

 $A_2 = A_1 - M$
= 20000 - 2M

(ii)
$$A_6 = 20000 - 6M$$

 $A_7 = A_6 \times 1-01 - M$
= $(20000 - 6M) \times 1.01 - M$

```
(iii) Ag= Agx1-01-M
            = [(20000-6m)x1.012-M(1+1.01)]x 1-01-M
             = (20000-6m) x1.013- M(1+1.01) x1.01- M
             = (20000-6M) × 1.013 - M (1+1.01+1.012)
         ALO = (20000-6M) × 10154-M(1+1-01+1-012+..+1-013)
                                        ap: a=1, r=1.01, n=54
ohondy by
             = (20000-6M) × 1-0154 - M × 1 (1-0154-1)
             = (20000-6M)x1.0154 - 100M(1-0154-1)
   (N) A60 = 0
          D = (20000-6m)x1.0154 - 100M(1.0154-1)
            = 20000 x 1.0154 - 6M x 1-0154 - 100 M x 1.0 154 + 100 M
            = 20000 x 10154 - M (106 x 1-0154 -100)
          M(106 x 1.0154 -100) = 20 000 x 1.0154
            M= 20000 X10154
106 x 1.0154 - 100
```

= 420 -4448

1. M= \$420-44 (nrst 4).

Question 16.

(a) (i)
$$\frac{1}{dx}(x^2 \ln x) = 2x \cdot \ln x + x^2 \cdot \frac{1}{x}$$

$$= 2x \ln x + x$$

(ii) Julnudu

From (i),
$$\frac{d}{dx}(n^2 \ln x) = 2x \ln x + x dx$$

$$n^2 \ln x = \int 2x \ln x + x dx$$

$$= \int 2x \ln x dx + \int x dx$$

$$= 2 \int x \ln x dx + \frac{x^2}{2}$$

$$2 \int x \ln x dx = n^2 \ln x - \frac{x^2}{2}$$

LHS = dN

= k. Aekt

= KN

= RHS

: N = Aekt is a solution

(iii) At
$$t=0$$
, $N=100$.
 $100 = Ae^{k(0)}$
 $= A$
 $N = 100e^{kt}$
At $t=2$, $N=400$.
 $400 = 100e^{2k}$
 $4 = e^{2k}$
 $2k = \ln 4$
 $k = \frac{1}{2} \ln 4$
 $= \ln 4^{1/2}$
 $\frac{1}{2} - k = \ln 2$

(iii) At
$$t=10$$
,
 $N = 100e^{10\ln 2}$
 $= 102400$.

(iv)
$$N = 1000$$
, $t = ?$
 $1000 = 100e^{t \cdot \ln 2}$
 $10 = e^{t \cdot \ln 2}$
 $t \cdot \ln 2 = \ln 10$
 $t = \ln 10$
 $\ln 2$
 $= 3.3219...$
 $= 3 \text{ mins } 19 \text{ sec (nrst sec)}.$

